
Lecture 7 - Sep 25

Math Review

Relational Overriding
Functional Property
Partial Functions vs. Total Functions



Announcements/Reminders

• Today’s class: notes template posted
• Event-B Summary Document
• Priorities: 

+Lab1 → Review
+Lab2 → Review

• Released:
+ ProgTest guide
+ 2 Practice Tests and solutions
+ Lab1, Lab2 solutions
+ Possible change of ProgTest venue - to be confirmed



Relational Operations: Overriding

Example: Calculate r overridden with {(a, 3), (c, 4)}
Hint: Decompose results to those in t’s domain and those not in t’s domain.
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Example: Calculate r overridden with {(a, 3), (c, 4)}
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Exercises: Algebraic Properties of Relational Operations

Define the image of set s on r in terms of other relational operations.

Define r overridden with set t in terms of other relational operations.

Hint: What range of value should be included?

Hint: To be in t’s domain or not to be in t’s domain?
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Functional Property

isFunctional(r) ⇔ 

∀ s, t1, t2 • 
( s ∈ S ∧ t1 ∈ T ∧ t2 ∈ T ) 
⇒ 

( (s, t1) ∈ r ∧ (s, t2) ∈ r ⇒ t1 = t2 )

Q: Smallest relation satisfying the functional property.
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Functional Property

isFunctional(r) ⇔ 

∀ s, t1, t2 • 
( s ∈ S ∧ t1 ∈ T ∧ t2 ∈ T ) 
⇒ 

( (s, t1) ∈ r ∧ (s, t2) ∈ r ⇒ t1 = t2 )

Q: How to prove or disprove that a relation r is a function.
Q: Rewrite the functional property using contrapositive.
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Partial Functions vs. Total Functions

e.g., { {(2, a), (1, b)}, {(2, a), (3, a), (1, b)} } ⊆ {1, 2, 3} ⇸ {a, b}

e.g., {(2, a), (3, a), (1, b)} ∈ {1, 2, 3} → {a, b}

e.g., {(2, a), (1, b)} ∉ {1, 2, 3} → {a, b}

e.g., {(2, a), (1, b), (3, a), (1, a)} ∉ {1, 2, 3} → {a, b}

r ∈ S ⇸ T ⇔ ( isFunctional(r) ∧ dom(r) ⊆ S )
r ∈ S → T ⇔ ( isFunctional(r) ∧ dom(r) = S )

Exercise: Visualize S ⇸ T vs. S → T
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e.g., { {(2, a), (1, b)}, {(2, a), (3, a), (1, b)} } ⊆ {1, 2, 3} ⇸ {a, b}

e.g., { {(2, a), (1, b)}, {(2, a), (3, a), (1, b)} } ⊆ {1, 2, 3} ⇸ {a, b}

vI r2

↳
S T

r = S- T
A

v2ES + T
E

& OX
↓ ↓ ↓

a set
what each member

asetofde a
sidered

is a setofed pairs property)O

Tais
I It



&

S = 91 : 2 > 33 f(n) = 2n+ 2n -4

T = & a b 3EVI fans is Ocuis~C2, fan) is Ocus
K, fin) is O(zY)

v = E((ca) = (2 =
b)
> (3 > 9)3

VD v is a relation.

(s) -
~ v is a partial function .

most /r& V is a total function.

RI
. Correct. R2 . Most accurate ?


